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955. &Orbital Contraction in Chemical Bonding. 
By D. P. CRAIG and E. A. MAGNUSSON. 

In  molecules such as phosphorus pentachloride and sulphur hexafluoride 
the bonds can be described as covalent dsp hybrids, but a study of overlap 
integrals shows that the d orbitals of phosphorus and sulphur in the free atoms 
are too weakly bound and diffuse to contribute to the bond energy. A type 
of polarization is proposed in which such diffuse orbitals are contracted, 
bringing the electrons closer to the atoms or groups to which bonds are to be 
formed and so adapting them better to bonding. Charge transfer from the 
central atom into orbitals of tbe outer atoms is not considered, but the 
tendency for charge to accumulate there is manifest in the contraction of the 
central atom’s orbitals. Some features of the contraction are examined 
in a model in which the potential field of outer atoms is replaced by a Coulomb 
field and the energy of the electron minimized with respect to the exponent 
in a Slater orbital. Applied to real molecules the results from the model 
suggest that contraction is enough to allow substantial participation by d 
orbitals in covalent bonding of this type. 

IN an analysis of the conditions under which bonds might be formed using d and f atomic 
orbitals, a problem which has to be solved if the covalent-bond model is to be retained at 
all is that in a number of theoretically important cases the orbitals are apparentlymuch 
too weakly bound and diffuse to participate appreciably in bonding. We shall find, for 
example, that without some hypothesis of modification of the orbital sizes, the suggestion 
that sulphur hexafluoride SF, is held by d2sP3 covalent bonds using sulphur 3d orbitals is 
untenable. It has been suggested that the difficulty arises from the use of free-atom 
parameters for the d orbitals, and that modifications occur in molecule formation by 
polarisation due to the attached groups. 
noted that d orbitals which were as weakly bound as the free-atom data required (accord- 
ing, e.g., to Slater’s rules which, even if not really precise in such cases, are certainly 
correct in the qualitative sense of giving very low ionization potentials) would be strongly 
polarized by electronegative ligands through the partial withdrawal of charge from the 
weakly bound orbitals of the central atom and a tightening of the remaining charge to a 
size compatible with binding. In a general way this certainly describes what happens, 
but in detail it is not easily combined with a discussion of covalent-bond strengths in terms 
of overlap integrals; this is easily seen, for, if the withdrawal of charge proceeds to the 
point where S2+ describes the electronic situation only four of the bonds are covalent 
and they are based on the 3s3P3 configuration of S2+. The d overlap integral then has no 
bearing on the case, and its importance is reduced progressively as this limit is approached. 
For this reason we prefer to retain a description of the polarization which allows the bonding 
to be described without charge transfer. This does not imply the unrealistic limitation 
that the bonds divide their charge equally between the bound centres : on the contrary, 
the region of overlapping charge is much nearer to the more electronegative centre, as 
commonsense requires. It is only that, as detailed more fully elsewhere,l we regard the 
asymmetry of the electron charge as homopolar rather than heteropolar in origin. The 
bonds may thus be polar but not ionic. In a complex system it is almost meaningless to 
discuss which of the homopolar and heteropolar descriptions is “ right; ” they have to 
be looked upon as different approximations to the same electron distribution, both having 

Craig, Maccoll, Nyholm, Orgel, and Sutton 

Craig, Maccoll, Nyholm, Orgel, and Sutton, J., 1954, 332. 
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useful features. In this paper we shall develop a description of the polarization of weakly 
bound orbitals by electronegative ligands which is compatible with the covalent-bond 
model. Our discussion, which follows an outline given earlier,2s3 will be found to agree in 
most important consequences with that given by Craig et aZ.l in qualitative terms, but its 
underlying mechanism is somewhat different. The discussion begins with a description 
of the overlap criterion for bond strength, continues with a treatment of polarization in 
terms of the contraction of the loosely bound orbitals, and the detailed application of this 
to a series of highly idealized model situations, and ends by noting briefly the relevance 
of the idea of orbital contraction to the understanding of conditions in molecules. 

The covalent-bond model is a model in the sense that it idealizes a complex situation to 
something very simple in the expectation that calculations based upon it will enable some of 
the properties of the actual system to be interpreted. In particular, each bond between 
the central atom A and a ligand atom B is idealized by the supposition that it is formed 
from appropriately directed and simply constituted atomic orbitals and +*. Our 
purpose is to examine within this framework the conditions under which the orbital +A , 
which is in general a linear combination of natural atomic orbitals, is strengthened by the 
hybridization of d orbitals with s and $. As an index of bond strength we use the overlap 
criterion, Le., we assume that a value of the overlap integral ( 1 )  of about 0.1 or greater is 
necessary for significantly strong covalent binding.1 

For equivalent octahedral bonds the orbital +A is determined by symmetry in its com- 
position from s, 9, and d orbitals, and the overlap integral So may be written as the sum 
(2) of contributions by the overlap integrals S d ,  S,, and Sp of the d, s, and fi orbitals at the 
centre atom A with the orbital at B : 

So = (1/7/3)5d + ( l / d 6 ) S s  + (1/2/2)S, - * - - (2) 
Large values of So are associated with strong bonds, and this requires large values for the 
primitive overlaps Sd,  etc., in (2). Moreover, whether d orbitals are to be used or not 
depends, amongst other factors, on whether their inclusion in the hybrid bond orbital 
+A strengthens the bond appreciably; that is, in terms of the overlap approximation, 
upon whether Sa in (2) is comparable to S, and S,. In the specific case of sulphur hexa- 
fluoride the sulphur atom is taken to be in the valence-state configuration 3s3P33d2. S, 
and Sp  are in the range 0 . 2 - 0 . 3 .  The two 3d electrons are well screened from the nucleus 
by the inner electrons, and Sd on account of this efficient screening and consequent diffuse- 
ness of the 3d orbitals is nearly zero.1 Under these conditions we should not expect d 
hybridization to occur for the following reason. In the covalent-bond model promotion of 
two electrons into 3d orbitals occurs if the bond energy of six bonds minus the promotion 
energy gives a favourable energy balance compared with mechanisms of bonding not requiring 
promotion. If the d orbitals contribute nothing to the bond energy all that happens is that 
the bond-forming ability of the available s and p orbitals is spread over a larger number of 
bonds, and the potential gain in total bond energy will be small. It therefore seems 
essential to the idea of &hybridization that the d character in the orbitals is appreciably 
bond-strengthening, a condition which is not satisfied by the diffuse orbitals of the free 
atom. It becomes necessary to allow for polarization of the d orbitals, and this allows 
their participation to be understood, as will be shown. 

Orbital Contraction.-We construct a simple model to represent d electrons in an 
octahedral molecule and postpone the consideration of actual examples. A single d 
electron will be supposed to move in the field of a nucleus of charge 2,; and upon this 
hydrogen-like atomic system a perturbation will be superposed consisting of six positive * 

* The reason for choosing positive charges is that the field of an atom capable of forming a covalent 
bond is electron-attracting. The familiar theory of the effect of crystalline fields on 3d electrons in 
transition metals normally involves negative charges, because the field sources are either negative ions 
or electron pairs in formed bonds. 

Craig, Rev. Pure Appl.  Chem., 1954, 4, 4. 
Craig and Magnusson, J .  Ckem. Phys., 1956, 25, 383. 
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charges of magnitude 2, in a regular octahedral array of radius B atomic units. Because 
the model is to be used to simulate conditions in covalent bonds no provision is made for 
migration of the electron into orbitals at the perturbing centres. This would be another 
plausible method of allowing for the movement of the electron towards the positive 
charges; but in the present model the electron concentrates near the perturbing charge 
only as the changing size of the central orbit allows: the electron is, in other words, 
confined to an orbital based at the central nucleus. For 2, = 0 the eigenfunctions and 
energy levels are, of course, those of the hydrogen-like atom of charge Z,, otherwise the 
charges distort the orbital, expanding it if the orbital is small compared with the radius B 

and contracting if it is large. Roughly we may expect that contraction will occur if the 
radial maximum of the orbital is greater than G. As will be shown this conditions holds 
for the d orbitals whose usefulness for covalent bonding is at issue. The potential of the 
outlying charges may be expanded as a sum in the usual l / r  seriesJ4 which reduces to the 
following expressions for a regular octahedral field : 

V r < =  = -6Z,/. - (7/2)(2,/~)(#/~~) {.\/(2/9)0,O + (5/8) sin4 8 cos 49} . . . 

(7/2) (Z,/r)  (04/1A) { d(2/9)O4O + (5/8) sin4 0 cos 49’ I ” ’  - 
where 0 , O  is the normalized Legendre polynomial. 

They 
measure the potential of a charge -62, spread uniformly over a spherical shell of radius B. 

Inside the sphere the potential is uniform and equal to -6Zs/c, and outside it is that of 
a charge -62, placed at the centre of the sphere. An orbital of the unperturbed atom 
which lies largely inside the sphere is unaffected in form by the perturbation, but its 
binding energy is increased by 6Z,/o atomic units, corresponding to the extra energy 
required to ionize the electron through the charged surface. Alternatively, if the energy 
zero is moved down by -62,/0 in the presence of the perturbation, orbitals of this type 
are entirely unaffected by the first term in the potential (3). On the other hand an orbital 
of the unperturbed system which projects significantly beyond the radius B is specifically 
perturbed by the additional attractive potential -6Z,/r acting outside the sphere. This 
tends to draw charge inside, until a balance is reached between the increased kinetic energy 
of the contracted orbital and its reduced potential energy. The effect is thus a movement 
of charge into the sphere, giving a more compact orbital and therefore enhanced bonding 
power. An orbital of this projecting type also has its binding energy increased by the 
perturbation, but by an amount which is less than that for an orbital wholly within the 
sphere. This effect, which we shall study separately before dealing with following terms 
in the expansion (3), might be described theoretically in several different ways. The 
perturbed wave function could be expanded in a series of unperturbed hydrogen-like atomic 
wave functions for a central nuclear charge 2,; this expansion would converge slowly 
except for very small perturbing charges 2,. A quicker convergence would be obtained 
with a set of atomic functions for an increased charge 2, + 6, and it would be possible 
to choose 6 ,  for a given Z,, to give optimum convergence behaviour. Elaborate calcul- 
ations however are not justified ; we shall show, for example, that interconfiguration 
mixing is small (i.e., participation by orbitals of principal quantum number greater than 
the original), and it is adequate to take a single Slater atomic wave function of radial 
factor (4) and to minimize its energy with respect to the exponent a. Z,, Z,, and 0 appear 
as parameters. 

The first terms in each expression have a particularly simple interpretation. 

For diffuse orbitals in the presence of the perturbation a >Z,, and since Slater radial 
functions have their maxima at  r, = n 2 / a ,  the increase in u over 2, corresponds to a 
contraction of the orbital. 

Eyring, Walter, and Kimball, “ Quantum Chemistry,” Wiley, New York, 1944, p. 369. 
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The perturbation energy due to the first term in (3) is given by the expression (5) : 

This may be evaluated from tables5 We have, for n = 3 

(+alV'O1&) = -(6Z8/a)(2aa/3)7 (1/6 !)p ! 37/(2aa)7 - A6(2aa/3) + A5(2aa/3)} . (6) 

where &(a) = e-mr dr 
1 

More generally, expression (6) involves a special case of an integral which recurs in several 
sections of our work. It is : 

Tables of the auxiliary functions OR$% for selected values of p and n are given in an 
Appendix. 

The total energy is the sum of the perturbation term (5) and the unperturbed energy 
given by (8) for hydrogen-like orbitals. The latter have radial factors identical with the 
Slater functions (4) for Is, 29, 3d, 4f. . . i.e., when the azimuthal quantum number I has 
its maximum value of ( f i  - 1). 

W, = (a/n2)(a/2 - 2,) . . . . . . . (8) 

The procedure is to find the value of a for which the total energy given by (5) plus (8) is a 
minimum for selected value of the parameters Q, Z,, and 2,. The results are shown in 
Fig. 1. They allow a number of trends to be discerned. It has been noted that an orbital 
largely contained within the radius Q is little altered by the perturbing field, so that in 
the limits either of large G or large Z a  we expect the effective charge increment (a - Za) 
to vanish. In harmony with this (a - ZJ in Fig. 1 is less for Q = 4 than Q = 3 for given 2, 
and 2, values and it decreases in the order 2, = 0, 1, and 2. The dependence upon the 
bond distance Q is sensitive in the model, and in real systems we expect that ligands joined 
by short bonds (i .e. ,  first-row elements) will cause larger perturbations than others. The 
values Q = 3 and 4 are roughly those for bonds between a first- and second-row element 
and two second-ro& elements respectively. Table 1 gives additional results illustrating 
the rapid decrease in (a  - 2,) with increasing 2, : in general for 2, > 2n2/o contraction 
is negligible. The quantities Pa and Pa in Table 1 are the fractions of the electronic charge 
lying outside a sphere of radius a = 4 in 3d orbitals of effective nuclear charges 2, and a 
respectively. Contractions are large only when a significant amount of the unperturbed 
orbital lies outside the sphere. 

TABLE 1. Variation of the charge increment (a  - Za) with 2,. 
u = 4, Z a  = 0.167. 

z a  P a  Cc Pa a-2,  z4a P a  a P, a-2, 
1 0.98 1.7 0.82 0.7 4 0.085 4.05 0-075 0.05 
2 0.72 2.38 0-55 0.38 5 - 5-01 - 0.01 
3 0.3 1 3.15 0.27 0.15 6 - 6-00 - 0 

Small orbital contractions in our sense have long been known in simple systems for 
which detailed energy calculations have been made. For example, in H,, Wang found 
that an effective nuclear charge of 1.166 units minimized the ground state energy in an 

Kotani, Amemiye, Ishiguro, and Kimura, " Tables of Molecular Integrals," Maruzen, Tokyo, 1955. 
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HLSP approximation. This result involves a consideration of all the energy terms and 
so depends strongly on the particular molecular state; for excited states of H, the effective 
nuclear charge may be less than unity. The relationship in detail between such changes 
in effective nuclear charge and those in our own work is thus.slight. 

The results in Fig. 1 show that the contraction of loosely bound orbitals may be large. 

4 
n 

FIG. 1. Values of the increment (a - Z,,) to the eflective nuclear 
charge plotted as a function of the total perturbing charge ZZ,. 
The curves refer to difjerent values of Z,, the actual nuclear 
charge, and u, the distance in a.u. of the perturbing charges 
from the nucleus. 

(a)  2, = 0, (I = 3. 
(c) z,, = 2, 0 = 3. 

(b) Zo = 1, u = 3. 
( d )  2, = 0, u = 4. 

( a )  2, = 1, a = 4. ( f )  2, = 2, u = 4. 

6 12 18 24 
Total perturbing charge CZs 

FIG. 2. The contraction in an  octahedralfield 
of a d,; orbital of nuclear charge Z,, = 1.5. 
The orbital is  shown by the contour on which 
I Ic, I = 0.02, and the circle has a radius 
u = 4 a.u., equal to the bond distance. 
Left-hand diagram : Field charges 2, = 0. 
Centre diagram : Z, = 0.2, a = 2. 
Right-hand diagram : 2, = 1.6, a = 3. 

FIG. 3. Increase in the energy of promotion from a non-pro- 
jecting mbital to a 3d orbital of nuclear charge 2, in the jield 
of octahedral unit charges, 

Upper curve : bond length u = 3 a.u. 
Lower curve : u = 4 a.u. 

A 3d orbital with 2, = 1 (as in the 3s3p33d configuration of phosphorus) has its radial 
maximum at r,,, = 9 a.u. In an octahedral field of unit charges at c = 3 a is 3.2 and the 
radial maximum is at 2.8 a.u. , a value comparable with that of the orbitals of ligand atoms 
such as chlorine, and therefore compatible with covalent bonding. Typical magnitudes of 
orbitals before and after contraction are shown in Fig. 2. 

An important point in a more general consideration of the bond possibilities is that the 
energy of promotion of the electron into the 3d orbital, if changed at all, is increased by the 
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perturbing field. The reason for this is that an inner, non-projecting, orbital is more 
stabilised than a projecting orbital, so that the excitation energy from one to the other is 
increased. The increase may be considerable. A 3d orbital of Za = 1 has a binding 
energy of 0.055 a.u. in the free atom and in the octahedral field of unit charges at Q = 4 it 
is 1-265 a.u., an increase of 1-21 a.u. A less projecting and more tightly bound 3+ orbital 
is stabilised by almost the full 6Z,/cr = 1.5 a.u., so that the excitation energy would be 
increased by 0-29 a.u., or 8.2 ev. This example is an extreme one, but it shows that the 
free-atom promotion energy to, say, P(3s3p33d) has little relevance to the conditions of 
molecule formation, and that an extra promotion energy of several volts may be required. 
This effect is illustrated in Fig. 3, which shows the incremental energy A for promotion 
to the 3d orbital plotted as a function of the nuclear charge 2,. 

The most important feature in Fig. 3 is the strong dependence of A on 2, which shows 
that, although the overlap condition may be quite easy to fulfil over a considerable range 
of Z,, the energy condition is not; and in particular we should not expect bonds to be 
formed if the free atom orbitals are very weakly bound indeed, i.e., for 2, h 0, even though 
the orbitals after contraction would overlap sufficiently. It can safely be predicted that 
the energy of promotion into the valence state would require more energy than is supplied 
by the resulting bond formation under these conditions. Also crude methods of assessing 
Z,, such as Slater’s rules, are not good enough for accurate energy calculations of this kind 
in view of the sensitivity shown in Fig. 3, although they suffice for the rather insensitive 
calculations of orbital size and overlap. Moreover, we find that for energies, much more 
than for orbital sizes, later terms in the potential (3) are important. These remarks must 
therefore be read in their context as applying to the zero-th order approximation. 

Contraction in Fourth Quantum Level Orbitals.-The radial maximum of a fourth quan- 
tum orbital of the Slater type occurs at r, = 16/2,, or 16/9 times farther out than for a 
third quantum orbital of the same nuclear charge. We expect for this reason that orbital 
contraction will operate more strongly for the same values of the parameters c, Z,, and 2,. 
This expectation is supported by the results in Table 2 which, except for the last column, 
are for c = 4 a.u. 

z a  
0 
0 
0 
0 
0 
1 
1 

2, 
0-25 
0.5 
1-0 
2.0 
4-0 
0-25 
0-5 

TABLE 2. Contraction in 4f orbitals at Q 

1.5 0.4 0- 5 1 1-0 
2.5 0- 6 0-7 1 2.0 
3.5 0.9 0.9 2 0.25 
4.35 1.1 1.2 2 0-5 
5.1 1-3 1-4 2 1.0 
2.4 0.6 0.7 2 2.0 
3.1 0.8 0- 9 

a a/4 a*/3 z a  2, 

* For 3d orbitals at u = 3. 

= 4. 
U a14 a*/3 
3-9 1.0 1.1 
4-6 1.15 1.3 
3-0 0.75 0.9 
3-6 0.9 1.0 
4.2 1.05 1.2 
5.0 1.25 1-4 

Comparison with Fig. 1 shows, for example, that, for Q = 4 and 2, = 1, a 3d orbital 
of unit nuclear charge has a = 2.7, compared with 3-9 for a 4forbital. However a more 
useful comparison, shown in the last two columns of Table 2, is between the wave-function 
exponents a / n  calculated at  c = 4 for the 4f orbital and at Q = 3 for the 3d. These are 
close, and suggest that for other principal quantum numbers n one might estimate values 
of a quite well by assuming the constancy of aln evaluated for Q = n a.u. 

Secondary Ei$ects.-Two equivalent electrorts. In this and following sections we 
consider a number of factors which may be expected to modify the results obtained for a 
single electron in a spherically symmetrical field. It will be shown that within the range 
of values of the actual nuclear charge 2, for which contraction is important, the modifying 
factors are relatively unimportant. 

In phosphorus pentafluoride with the valence-state configuration 3s3p33d, and in the 
other cases of a single exterior electron, the model already discussed can be applied. In 
octahedral molecules of the sulphur hexafluoride type the central atom’s valence state is 
3s3p33d2 with two equivalent and weakly bound d electrons and it is necessary to consider 
the influence of interelectronic repulsion. The analogous model is a helium-like two- 
electron system in the field of a bare nucleus surrounded octahedrally by positive charges. 
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Even in the 2, = 0 limit we now have to consider both the actual nuclear charge 2, and an 
effective nuclear charge which we shall call simply 2. In the one-electron case the two are 
the same. With two electrons 2 becomes the effective charge required to minimize the total 
electronic energy, including interelectron repulsion. 2 is less than 2, on account of 
screening, as is well known in the treatment of the helium atom, and in the Slater theory 
of complex atoms. If we are to include electron repulsion explicitly in calculations of the 
properties of the two-electron system we must begin with the true nuclear charge 2, and 
should find that, in the absence of a perturbing field, the energy is minimized by a value 
of a close to the 2 given by Slater’s rules. Interelectron repulsion alone causes a decrease 
in effective charge, i.e., an orbital expansion, which will be opposed and finally overcome 
by the octahedral perturbation. 

The energy of the two-electron valence-state may be found from the energies of 
stationary states of the same configuration. The energy of the appropriate valence state 
for two 3 4  electrons is as follows, the d, orbitals being supposed inaccessible : 

21 + F,-, - 63’2 - 1.5F4 . . . . . . . (9) 

in terms of the Slater parameters F ,  and I ,  the single-electron binding energy. Evdu- 
ation of the F’s leads to the expression 21 + 0.0804~~ for the total energy. Fig. 4 shows the 

0.5 

0.4 Energy tevms for one of a $air of equivalent 3d 
electrons an the field of a nucleus of charge 1.5 sur- 
rounded by a regular octahedron of unit charges at a 0.3 
distance of 4 a.u. The lowest curve is the free-atom 3 
binding energy, the straight line is  the interelectron 6 0.2 
repulsion term, 0-0402a, the broken curve is the zero-th - 
order perturbation energy plus the constant 1-5 a.u., h 
and the upper full line is the sum, showing a shallow O’/ 
nzinimttm in the total e?zevgy at about a = 2.65. 

Pk. 4. 

-0.1 

\ 
\ 
\ 
\ 
\ 
\ 

\\ 

terms I ,  0.0402a and the perturbation energy separately plotted for the case Q = 4, 

Without a perturbing field the energy is minimised by a = 2 = 1.14, corresponding to 
a screening by one electron of the other equivalent to 1.5 - 1-14 = 8-36 electron, in close 
agreement with the Slater value of 0.35. The field being included, OL = 2.65 compared 
with the value 2-85 for one electron, for which there is no repulsion term. One sees there- 
fore that the screening correction for interelectron repulsion is reduced by the perturbing 
field. This is a general result which we shall use in the following way. Instead of using 
2, for the calculation we use the Slater value of effective nuclear charge; then a in the 
perturbing field is an underestimate of the formally correct value based on 2, and explicit 
inclusion of interelectron repulsion. Since the under-estimation is small, usually much 
less than the upper limit 0.35, it is unimportant. 

Hitherto we have examined the effect on the 
the unperturbed atomic orbitals of the spherically symmetrical first term of the potential 
(3), which depends only upon the total charge -62, and its separation Q from the central 
nucleus. Second and later terms depend also upon the polar angles 8 and 9. As is well 
known, an octahedral field does not remove the three-fold degeneracy of the p orbitals but 
splits the five d orbitals into a doublet (d,,) and a triplet (d,) of which the doublet is lower 
under our conditions of positive field sources. The second term of (3) causes the major 
part of this splitting. The energies of the split components may differ considerably and 

2, = 1.5, 2, = 1. 

Higher approximations to the potential. 

Condon and Shortley, “ The Theory of Atomic Spectra,” Cambridge Univ. Press, 1953, p. 202. 
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orbital contractions must be calculated separately for them. 
we have for the perturbation energies : 

In terms of the integrals (7) 

d,  : -(Z,/B)(SBR~, - (2/3) &i3} 
. .  

I \ (10) . . . .  
d, : -(.Z,/B){~BR~~ + OR:,) 

The first term, common to both expressions, has already been discussed at length. The 
second term is now added and the total energy minimized, giving values of a for d, and a,. 
Typical results for 2, = 1-5, ts = 4 a.u., are shown in Table 3. The zero-th order term 
tsRz,, increases monotonically with as, and it must increase the effective charge. The term 
B R ~ ~ ,  tabulated in an Appendix, approaches zero both at small and at very large values of 
as, passing through a maximum at  acr = 10.5. Near this maximum it varies slowly, and 
its influence on the rate of change of the total energy is correspondingly small. This is 
the reason why Table 3 shows no change in a from the inclusion of the second term in the 
potential in the first example. For Q = 4 the maximum in OR:, occurs a t  a = 2.625, so 
that if the zero-th order term gives a >%625 the second term of the potential will decrease 
a. This is too small an effect to be apparent in the first case in Table 3, but appears in the 
second, where the larger charges 2, = 4 cause larger magnitudes throughout. This 
accounts for the fact that the d ,  orbitals, which are the more stable, have a lower a value. 
The d, orbitals, in the energy of which the aRi, term appears with negative sign, have a 
greater value than the d,,, and greater than the zero-th order value in the last column. 
In other cases (viz., small 2, and 2,) in which the energy corrections are less, this trend is 
reversed, and, for a less than 2.625, the second term increases a values for d, and decreases 
them for d,. For B = 3 the maximum in oRi3 is at the larger value a = 3.5, so that in 
most cases of interest d,  will be slightly more contracted than d,. These effects of higher 
approximations are small because, in the interesting range of a, aE3 is a slowly varying 
function. Its magnitude however is considerable, and the splitting caused by it between 
d ,  and d,  is 4.3 ev in the first of the two examples quoted in Table 3. 

TABLE 3. Orbital contraction in a n  octahedral field Za = 1.5, B = 4 a.u. 
2, a (d,) a (d,) a (zero-th order) 
1 2-75 2-75 2-75 
4 3.5 3-75 3.6 

The relative insignificance of the second term in the potential applies only to small 
values of 2,. Large values of 2, bring in large values of aa, and it becomes important 
that GI?',, falls off more slowly at large ac than does oR:, so that the former becomes pre- 
dominant. For 2, = 6, Q = 4, and field charges 2, = 4 the values of a are a(d,) = 5.6 
and a(d,) = 6.3, both being determined by the second term in the potential. The interest 
in such extreme cases is only formal because at  Z, = 6 the orbital is already suitable for 
covalent-bond formation, and the change in size caused by the perturbation has a negligible 
effect on its overlapping power. 

Values of the quantity tsRt4, tabulated in an Appendix, allow the analogous calculations 
to be performed on orbitals of principal quantum number 4;  we shall not discuss these in 
detail. The maximum value of OR:, is at a = 4.5 for Q = 4, allowing the general conclusion 
that over most of the important range the second term in the potential will increase a for 
d ,  orbitals. Also because the variation is slow, the effect of this term is small as in the 
3d calculation. 

The reasons for the particular types of variation in a which higher terms induce are 
inherent in the problem. The point charges which surround the central atom attract the 
electron in the central atom's orbital. If this orbital is small compared with the radius of 
the charges it will tend to be expanded ; if it is large it will be contracted ; and the transition 
between these forms of behaviour will occur at a value of a for which the radial maximum 
of the orbital occurs at, or near, the charge radius Q. Now the radial maximum is at 
Y, = n2/a, where n is the principal quantum number of the orbital; equating 7, with a 



[1956] &Orbital Cmtraction in Chemical Bo:zding. 4903 
we find that the transition between orbital expansion and contraction is at O(Q = n2, or 
at 9 a.u. for a 3 quantum orbital and 16 a.u. for a 4-quantum orbital. These values are 
not exact because the radial maximum is not exactly the measure of the quantity associated 
with the orbitals which determines whether they are drawn outward or inward by the field, 
but it is fairly close. A more precise measure is the value ao at which the integrals of the 
later terms in the expansion have their maxima, viz., ac = 10-5 and 18 for third- and 
fourth-quantum orbitals respectively. Under the conditions of our problem the orbitals 
always require contraction to minimize their energy, and the zero-th term in the expansion 
of the potential overwhelms all others; this shows no maximum, and consequently the 
presence of the maximum only shows itself through the minor modifying effects which 
later terms in the potential exert. 

Fields of lower symmetry. These may be produced by variations either in the charges 
2, or in the distances between the central atom and the ligands or in both. To simulate 
conditions in, for example, AX4Y, molecules such as SF4C12 presumably both are required, 
but the effects of the variations are best examined separately. The first example is a 
trans-octahedral array consisting of two charges Zas and four Zmd,  all a t  the same distance Q. 

The potential is : 

Vr < o  = - ( 2 z a x  + 4Zr;td) /Q - 4 ( 2 / 5 )  02°(22a,-2z,,,d)(r2/03)- 
d(2 /9)  @40(2Z,, + 1-5Zrad)(1A/~5) - (35116) sin4 8 cos 49 Zrad(1A/~5) - . . (11) 

together with analogous expression for V,, (J. The perturbation energy corresponding to 
the potential (11) can be found by using tables in the Appendix. One finds that in the 
important range of 2, the major contribution to the energy is from the spherically 
symmetrical term which represents the potential of a charge ZZ;, + 4Zrad  uniformly 
spread over a spherical surface of radius Q. The later terms in the potential (11) remove 

TABLE 4. Eflectizle mclear charge in trans-AX,Y, fields. 
Field Z ,  4 4 2 )  ddlL) cc(dze - a / y )  

I 3 

a(AX) = a(AY) = 4 a.u.  
? 

1.5 3.0 3.2 
2.0 3.1 3.35 

1.5 2.95 3.95 
2.0 3-08 3-48 

i b2 
/ /  

a 7-2 I 

a ( A X )  = u(AY) = 4 a.u. 

2 1 2  

/ I  / 
1.5 

0 2.0 
2 5 4  

a(AX) = 4 a.u. 
2 

4 - b 0  
0-r / /  o 1.5 

2 2.0 
a(AY) = 4 a.u. 

Equal charges Z, = 2.0 ............... 1.5 
o(AX) = 4 a.u. o(AY) = 3 a.u. ... 2-0 
Equal charges 2, = 2-0 ............... 1.5 
a(AX) = 3 a.u. o(AY) = 4 a.u. ... 2.0 

3-0 
3.15 

2-65 
2-85 

3.6 
3.7 
3.65 
3-8 

3.0 
3.15 

2-65 
2.9 

3.58 
3.65 
3-8 
4.1 

3.05 
3.15 

3.0 
3.10 

2.95 
3-05 

2-68 
2.9 

3.3 
3.4 
3.75 
3.9 

3.25 
3.5 

3.1 
3.33 

3.0 
3.15 

2.65 
2.9 

3.55 
3-76 
3-85 
4.1 

most of the degeneracy of the orbitals, giving four components, namely dp8, d3y, dza--l/t, 
and d,,, dyz, the last two remaining degenerate. For each component the energy must 
be minimized with respect to the exponent a, for given values of the parameters Z,, Z,, 
and G. In connexion with binding in molecules, Some values are given in Table 4. 
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d,a and dz~-y '  are of special interest, the former being concerned mainly in the axial bond 
orbitals and the latter with p,, pV, and s in the radial orbitals. 

The second extreme representation of asymmetrical molecules is in terms of variable 
bond lengths a, with the same 2, for all ligand groups. The important comparison is 
now between different molecules such as AX,Y,, AX,Y,, and the trend is illustrated by 
reference to ligands X and Y having the same charge 2, but separated from the central 
atom by 3 and 4 atomic units respectively. Results are shown in the last two sets of 
Table 4. One sees that the effect of 2 or 4 of the more closely held ligand X on the exponent 
a is not too different from a linear interpolation between the extremes AX, and AY,. The 
effect is dominantly isotropic with only minor variations between different orbitals. Thus 
contraction is greater in all directions for the presence of some groups held by short bonds. 
This might be important in molecules in which, by analogy with the properties of the 
model, one would expect that one or more groups held by short bonds (e.g., first-row 
elements) would extend their influence to all the groups present and so to strengthen all 
the bonds. 

To complete this consideration of the less symmetrical fields we should consider 
asymmetry developed by differences of charge and distance together. However this 
hardly seems necessary. The effect of charge asymmetry is small compared with the 
effect of the same total charge uniformly distributed, and smaller than the effect of changes 
in bond length. One finds that changing a from 4 to 3 causes the same change in a as 
doubling the charges 2, at  a constant Q = 4 .  Thus where both charges and distances alter, 
the former may in general be neglected; and if only the charges vary it is clear that the 
consequent variations in a from orbital to orbital are small. 

Interaction of the 3d with Other Atomic Wave Functions.-A full solution of the 
perturbation problem calls for an expansion in a complete set of functions, such as the 
hydrogen-like atomic functions of nuclear charge 2, + 6 referred to earlier. The effect 
of this is to allow-flexibility in the form of the radial wave function and so to distribute 
the electronic charge between the central nucleus and the perturbing nuclei in the manner 
required to minimise the energy. Such an expansion is not of course unique : variation 
in the radial function provides for a charge drift which could be approximated in other 
ways, such as by using a wave function initially which allowed some migration of the 
electron into orbitals a t  the perturbing centres. 

In the regular octahedral field, the number of different atomic wave functions able to 
participate in the expansion is reduced by symmetry. In  this field a d atomic wave 
function has components which transform as do the E and TI representations of the 
octahedral group. The same representations occur in wave functions of azimuthal quantum 
number 4, 6, 8 .  . . so that the lowest wave function of other than d symmetry appearing 
in the expansion is the 5g. The separation between orbitals n = 3 and n = 5 in the 
perturbing fields is several electron-volts and the influence of this orbital is negligible under 
this and the other conditions of the problem. The only important interconfigurational 
mixing is with other orbitals of d symmetry, and of these the 4d is most prominent, on 
account of its being closest in energy to the 3d. 

We consider the wave function (12) in terms of which the importance of 3d and 4d 
mixing may be studied : 

Y ( a ,  x )  = +,cos x + +,sin x . . . . . . (12) 

The 3d and 4d wave functions are given the same effective charge a. The energy may be 
expressed as follows, the new integrals and 33 being tabulated in an Appendix. 

W(x, aa) = cos2x W u ( a o )  - (6zJa) R:3(aa)} + 
sin2x W4d(ao) - (6Z,/m)W(aa)} - sin2~(62,/0)Jfj(~~o) . (13) { 

{ 

The values of cos2x and a which make the energy a minimum under the conditions 2, = 1 
and a = 4 are given in Table 5. The examples, which are representative, show a marked 
energy depression by configuration mixing (143, 2.6, and 2.9 ev respectively) but only a 
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small change in a. 'Moreover the weight of the 3d function, given by cos2x, remains high, 
showing that the properties of the mixed wave function will be dominated by the 3d 
component. Thus we may expect that, for example, values of the overlap integral derived 
from a single contracted orbital will be close to values from the more complicated forms. 
In a field of lower symmetry, mixing will doubtless play a somewhat larger part. 

TABLE 5. The efect of 3d and 4d mixing for 2, = 1, CJ = 4. 
U w + 6Z.l. 

2, a Wmin + 6Z,/u COS' x (x = 0) (x = 0) 
1 2.65 0.17 a.u. 0.9 2.75 0.235 a.u. 
2 2-85 0-245 0.9 3.05 0.34 
4 3-15 0-345 0-9 3.45 0.45 

Summary of Conclusions based o n  the Model.-(i) Slater orbitals of principal quantum 
numbers 3 and 4 G t h  free-atom effective nuclear charges in the range 0-3 are strongly 
contracted by point charges at a distance 0 equal to an average bond length. After 
contraction the effective nuclear charges u are usually in the range 1-5-5. Orbitals of 
principal quantum number n = 4 are more affected than n = 3. 

(ii) It may be inferred that similar but diminishing effects will occur for orbitals n = 2 
and n = 1, and increasing effects for n = 5 and 6. 

(iii) For low values of free-atom effective nuclear charge the predominant effect is 
isotropic, affecting all orbitals with the same radial dependence whatever their angular 
properties. Secondary directional effects are small, even in fields such as the axial field 
of two point charges. In the secondary effect orbitals directed towards the field charges 
are more contracted than others if very loosely bound, and less contracted otherwise; 
the transition occurs for 'yt = 3 orbitals at aa = 10.5 and for those of n = 4 at acs = 18. 

(iv) Because the contraction is mainly isotropic orbitals capable of x-bonding are con- 
tracted nearly to the same degree as a-bonding orbitals. 

(v) The energy of electron promotion in the presence of the field is greater than the 
free-atom promotion energy by an increment A depending on the distance a, the charges 2, 
of the field sources and the free-atom effective charge 2,. The increment for Z,* 0 is 
probably greater than the free-atom promotion energy. For values of 2, appropriate to 
the 3d orbitals of S and P the increment may be about 5 ev in the zero-th order approxim- 
ation, but less when terms of higher order are included. 

Application to Molecules.-The properties of the model systems may be calculated 
precisely or, if approximations are made, their effect can be foreseen. However, use of 
results for the model to interpret molecular properties requires assumptions of a far- 
reaching kind. Some of them inherent in the overlap approximation have been discussed.l 
Others concern mainly the use of Slater orbitals for the central atom and simulation of 
the atomic fields of the ligand atoms by the coulomb field of a point charge. Our discussion 
is confined to the particular question of the feasibility of covalent bonding after allowance 
for increase in overlap of the contracted orbital of a central atom with the orbitals of the 
ligand atoms. We shall not attempt to deal with the final determining factor in bonding, 
namely, the energy, since the relation between overlap and bond energy is not well 
established. 

Slater furktions are not very close approximations to self-consistent-field d orbitals, 
but this is not serious in calculations of overlap integrals which, at best, can serve only as 
a rough guide to the bonds likely to be formed. As applied to our present calculations 
the position is no worse; indeed it is likely to be somewhat better since we are concerned 
to establish a specific effect upon highly projecting orbitals and only the finer quantitative 
aspects of this depend upon the form of the orbital. Equally, it is of secondary import- 
ance for overlap calculations whether, the form of the orbitals being accepted, the 
exponents given by Slater's rules for free atoms have a precise quantitative significance. 
It will be seen in the work described in earlier sections that the value of a in the contracted 
orbital varies more slowly than the 2, of the free-atom orbital, so that an error in the 
latter is cushioned. Finally, it has to be ensured that the Slater exponent can be identified 
with Z,/n, where n is the principal quantum number, in the model. Treating this point 
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first, we note that the Slater exponents are in principle derived by minimizing the total 
energy of an atom. If, as for 
example in the 3s3P33d configuration of P, we have a single electron exterior to all the 
rest the exchange interactions of this electron are very small, and the effect of all the 
other electrons on it differs little from the effect of the same total electronic charge amal- 
gamated with the nucleus. In this case we are quite justified in identifying the Slater 
effective charge with the actual charge 2, on the nucleus in the model. If there are two 
equivalent projecting electrons as in 3s3p33d2 the Slater value of the effective charge may 
be identified with 2, only when allowance is made for the mutual repulsion between the two 
electrons, as described earlier, and when exchange integrals of the other electrons with the 
outer pair may be ignored. The case would be quite different for an inner electron; 
there the potential field is not even roughly that of point charge but has substantial non- 
central coulomb and exchange contributions strongly configuration-dependent, and the 
behaviour of the electron could not be represented at all well in a one-electron model with 
the same nuclear charge. It turns out that only in the circumstances of a highly screened 
and loosely bound exterior electron can our model be applied; and fortunately this is the 
case of interest. 

The FieZd of Ligand Atoms.*-To apply the model to molecules also makes it necessary 
to represent the field of a ligand atom by that of a point charge. The approximation 
made in doing this can be brought out by considering a case intermediate in complexity 
between the model and real systems. This is a central hydrogen-like atom with, as usual, 
a loosely bound electron surrounded, not by point charges, but by other hydrogen-like 
atoms, introducing the possibility of bonding between the electron of the central atom and 
those of the surrounding atoms. The potential of the ligands now consists of the attraction 
of their nuclei minus the coulomb repulsions of the ligand’s electrons plus exchange terms. 
Evidently the dependence on distance of this composite potential will not follow the r-l 
law at all closely, and the parameter Zs used in the model as the perturbing charge of the 
ligand can be no more than the parameter of a coulomb field which is equivalent in some 
sense to the true atomic field. The same holds in complex atoms. It is clear that at any 
point in the field of an atom there is a value of 2, which will give the value of the potential 
at that point provided only that the field is spherically symmetrical, and another which will 
give the field strength, but thevalues of eachvarywithr. Values of these quantities are given 
in calculations of the self-consistent fields of atoms and may be used in a useful comparison 
of the halogen atoms F, C1 and Br. For this purpose Table 6 compares values of Z p ,  the 
potential-determined nuclear charge, and Zf , the field-determined nuclear charge for the 
halogens each at its single-bond covalent radius. 

This includes exchange as well as coulomb-type terms. 

TABLE 6. S.C.F. Efective charges of the halogens at the covalent radius. 
Covalent radius (a.u.) 2, Zf Ref. 

F ........................... 1-21 0.7 2.6 8 
c1 ........................... 1.87 0.8 3.1 9 
Br ........................ 2-16 0.7 3.1 10 

Differences between the halogen atoms should not be expressed primarily as differences 
in the charge parameter 2, since at  the respective covalent radii the charges are nearly 
the same and show no clear trend. We shall therefore assign to the halogens the same 
value Z,, and treat this as a parameter, taking values in the range 0-254-0, which includes 
the likely values both of Zp and Zr in Table 6. The differences in behaviour between the 
halogens emerge as the result of different separations from the central atom and not of 
different perturbing charges. The contraction is quite sensitive to changes in the distance 

* Clearly the effect of ligand atoms is related to  their electronegativity ; but electronegativities 
These cannot be used directly, since separate values are required for effective charge and bond length. 

two are amalgamated in the concept of electronegativity.’ 
Pritchard and Skinner, Chem. Rev., 1955, 55, 745. 
Brown, Phys. Rev., 1933, 44, 214. 
Hartree, Kronig, and Paterson, Physica, 1933, 1, 895. 

lo Arnot and McLaughlan, Proc. Roy. Soc., 1934, A ,  146, 662. 
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parameter Q, as has already been pointed out, and, since the bond-length differences are 
considerable, the contractions vary substantially from F to C1, and from C1 to Br. We 
should expect different 2, values for elements in different Periodic Groups, but variations 
in bond lengths should still play the more important part. It must be emphasized that 
this discussion of actual values for 2, is tentative. The fact that the ligand fields are not 
truly coulombic makes the choice of the " equivalent " coulomb parameter rather uncertain. 

The domain of application of the model is, broadly, to those molecules for which 
covalent binding requires participation by loosely held d orbitals. The simplest are those 
with 3d orbitals, for example, the halides of second-row elements and certain complex ions 
such as AlF63-; and with 4d orbitals there are analogous halides and ions and as well the 
large and important class of transition-metal complexes with incomplete 3d shells. In 
some of these, both 3d and 4d electrons may be concerned : the 3d by their electrostatic 
stabilization in the crystalline field, and the 4d in covalent binding. On account of their 
additional complexity we postpone dealing with these molecules and confine attention to 
the simple examples for which, moreover, overlap integrals are available. 

In a following section we apply our work to two specific cases, namely, the halides of 
sulphur and phosphorus. The application of the model to these molecules has the following 
features : (i) for the central atom we use the effective nuclear charge calculated from 
Slater's rules as the actual nuclear charge of a hydrogen-like orbital, treating inner electrons 
as fused into the nucleus. This applies to a single exterior d electron as in P(3s3p33d); 
with two equivalent electrons, as in S(3s3p33d2), interelectronic effects are allowed for 
either by using the Slater effective charge for the configuration 3s3p33d and including 
interelectron repulsion explicitly or, a little less precisely, by using the Slater exponent 
straightforwardly for the two-electron case and allowing the repulsion to be taken up in 
the extra screening correction. (ii) For the ligand atoms we retain the fiction of a coulomb 
field but compute for a wide range of the coulomb parameter 2,. The same charge para- 
meter is used for all halogens, differences being allowed to appear through the variations 
in internuclear spacings a. 

The bond lengths in phosphorus penta- 
fluoride and pentachloride are approximately 2.9 and 4.0 a.u. Ignoring small effects such 
as higher order terms in the potential, we work out the contractions as already discussed, 
for a range of charge parameters 2, and equating Q to the bond length. The calculations 
are summarized in Table 7, in which a /3  is the exponent of the contracted 3d orbital. 
Since our results depend only on the total charge CZ,, the octahedral field results for 2, = 
0.25 apply directly to the trigonal bipyramid for 2, = 0.30 and the same bond lengths. 

Application to molecules PX, and 's& 

TABLE 7. Contractions and pz-dz* overlaps in PF, and PCl,. 

2, 0 

0 
0.3 3 
0-6 3 
1.2 3 
2.4 3 
4-8 3 

- 
a / 3  
0-33 
0.7 
0.9 
1.1 
1-3 
1.5 

PCl, 

S U 4 3  
1 - 

0 - 0.33 
0 4 0.6 

-0.01 4 0.8 
0.05 4 0.9 
0-12 4 1.0 
0.17 4 1.1 

7 

S 
0 
0 
0.1 
0.17 
0.2 
0.22 

In Table 7 the P-F bond length is taken as 3.0 a.u. to use values already tabulated. 
The overlaps are 2pz-3dza for PF, and 3fi2-3d21 for PCl,; the latter has been tabulated 
and the former is given in an Appendix. For all 2, the phosphorus orbital is more cqn- 
tracted in the pentafluoride than in the pentachloride, and the overlap associated with the 
contracted orbitals is comparable in the two examples although distinctly greater in the 
second. Small differences in overlaps may or may not be significant for bond strengths; 
the more important points are, first, that contraction is bigger for the fluoride than for the 
chloride for the same effective charges Z,, and, secondly, that the d overlap becomes 
comparable with the s-9 and p-p overlaps for 2, values within the physically reasonable 
range. For example in the pentachloride the P(s)-Cl(+) overlap is 0.24 and the P(p)-Cl(+) 
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overlap is 0.28, both little greater than the $4 values given at the end of Table 7. The 
sp3d covalent bond model in phosphorus pentachloride becomes tenable therefore once 
the contraction has been allowed for ; and similar arguments apply to the pentafluoride. 

In the hexahalides of sulphur we take a = 3 a.u. for the fluoride and o = 4 for the hypo- 
thetical chloride. The overlaps are found by interpolation in the tabulated values (Table 8). 
As before, the d overlap becomes considerable when the contraction is taken into account ; 
it is comparable to the overlap of s and $ orbits of S. 

Table 8. 

2, 0 4 3  
0 - 0.55 
0.25 3 0.9 
0.5 3 1.0 
1.0 3 1.1 
2.0 3 1.3 
4.0 3 1.5 

s 
0 
0.0 
0.05 
0.07 
0.12 
0.17 

SCl, 

(I 4 3  S 
I 

c 
$ 

- 0.55 0 
4 0-7 0 
4 0.8 0.14 
4 1.0 0.15 
4 1.1 0.18 
4 1.2 0.20 

=Bonding. Even in unsymmetrical fields all the d orbitals are contracted to about 
the same extent. For example in the “ square ” field of 4 equal charges Zs = 2, one 
finds a(&) = 3-15, a(dz~-y~) = 3.05, a(dzz,dyz) = 3-15. The last orbitals are used for 
x bonding in a square molecule, and the near equality of effective charge with the a-bond 
orbital shows that an environment which prepares diffuse d orbitals for participation in 
a-bond formation will allow x-bonding also if other conditions are met, such as availability 
of orbitals on the ligand atom. An example in which such x-bonding is important is 
sulphur trioxide, although here it is not necessary to invoke d participation in the o-frame- 
work. If the sulphur valence state is taken as 3s3P43d or 3s23p33d three a-bonds hold the 
trigonal shape, and one x-bond can be formed by using one of 3dZ2 and 3d,, or 3pa, the 
x-bond being shared between three sites. Alternatively if two electrons are to be promoted 
into the configuration 3s3P33d2, three sp2 bonds are supplemented by three $d2 x-bonds. 
Both possibilities have of course been long recognized; but we can now support them by 
the consideration that the d orbitals concerned are capable of substantial overlaps with the 
2px orbitals of oxygen. With a value of Z,$ = 1-0 chosen to use available results, we find 

a(dz2) = 2.8. The 3d,,-2p,, overlap integral for the S-0 bond is 0-26, a value \,.” which would be increased in a $-a hybrid. One sees therefore that the overlap 
requirements implicit in the suggestion of double bonding are amply met. The 

strengthening even of the first, so that one might expect the 
II ( A )  gain from the second electron promotion amounts to two extra x-bonds, and a 

state to be attained in this molecule, as in the structure ( A ) .  
sp3d2 valence 

We thank Dr. I. G. Ross for his helpful comments on the manuscript. 

au 
2-5 
3.0 
3.5 
4.0 
4-5 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
12.0 
15.0 
20.0 

4 3  
0.4133 
0.4915 
0.5656 
0-6341 
0.6961 
0.7511 
0-8394 
0.90 1 1 
0.9416 
0.9667 
0-98 17 
0.9049 
0.9994 
1~0000 

APPEND 
0% 

0.1976 
0.2723 
0-3497 
0.4249 
0-4939 
0.5538 
0.6408 
0.6838 
0.69 12 
0-6743 
0-6434 
0.5676 
0.4647 
0.3500 

FIX 1.  
4 s  

0.1088 
0.1692 
0.2368 
0.3061 
0-3714 
0.4286 
0.5098 
0.5433 
0.5373 
0.5053 
0.4598 
0.3616 
0.2455 
0,1399 

A uxiliarj 
4 3  

0.0679 
0-1158 
0.1727 
0.2334 
0.2922 
0.3447 
0-4189 
0.4467 
0.4354 
0.3988 
0.3501 
0.2511 
0.1444 
0.0629 

v functions de j r te l l  in equation (7). 
uR& u R ; ~  aR,04 0RL OR$ 

0.0470 0.3563 0.3123 0.0453 0.0110 
0.0854 0.4261 0.3742 0.0766 0,0259 
0.1333 0.4941 0.4357 0-1169 0.0479 
0.1861 0.5593 0.4958 0.1655 0.0787 
0-2385 0-6208 0-5541 0-2203 0.1175 
0-2859 0.6778 0.6098 0.2785 0.1616 
0.3531 0.7757 0.7107 0.3930 0.2559 
0-3771 0-8510 0.7948 0.4879 0.3381 
0.3639 0.9052 0.8604 0.5503 0.3917 
0-3271 0.9919 0.9087 0.5776 0.4115 
0-2795 0.9657 0.9424 0.5749 0.4014 
0-1863 0.9890 0.9792 0.5126 0.3278 
0.0929 0.9984 0.9963 0.3807 0.1958 
0-0314 0.9999 0.9999 0.2243 0.0729 

a* at 
0.3048 0.1125 
0.3571 0.1291 
0.4071 0.1411 
0.4514 0.1477 
0.4928 0.1486 
0.5317 0.1447 
0.6074 0.1257 
0-6831 0.0989 
0.7554 0-0719 
0.821 1 0-0490 
0.8746 0.0316 
0.9470 0.01 16 
0.9882 0.0020 
1*0000 0*0002 
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Hydroaromatic 

APPENDIX 2. 
-0.5 -0.4 
- 0.1688 - 0.241 1 
-0.1042 -0.1349 
- 0.0216 0.0078 

0.0382 0.0770 
0.0675 0.1113 
0.0740 0.1111 
0.0675 0.0938 
0.0558 0.07 19 
0.0433 0.0517 

0.1 0-2 
- 0.4313 - 0.4040 
-0.2303 -0.2352 

0.0118 - 0.01 69 
0.1684 0.1354 
0.2226 0.1985 
0.2083 0.1968 
0-1642 0.1630 
0.1162 0.1210 
0.0761 0-0832 

* 

Steroid Hormones. Part V .  

Overlap ivttegrals : S(2pz- 
-0.3 - 0.2 
- 0.3 106 -0.3698 
-0.1610 -0.1 83 1 

0.0105 0.0268 
0.1182 0- 1539 
0.1548 0.1917 
0-1454 0.1739 
0-1163 0-1 343 
0.0842 0.0936 
0.0570 04607 

0.3 0.4 
-0.3540 -0.2859 
-0.2289 -0.2077 
- 0.0495 - 0.0770 

0.0882 0-0357 
0.1573 0.1038 
0.1707 0.1300 
0.1519 0.1277 
0-1205 0.1106 
0.0886 0.0884 

Notation as in ref. 1. 

-3a4. 
-0.1 
- 0.4124 
- 0.202 1 

0.0346 
0.1770 
0.2175 
0-1949 
0.1484 
0-1017 
0.0646 

0-5 
-0.2076 
- 0.1 708 
- 0.0900 
-0.0103 

0.0473 
0.0792 
0-0903 
0.0878 
0.0777 

0.0 
- 0.4338 
- 0.2 183 

0-0299 
0.1826 
0.2286 
0.2069 
0.1586 
0-1093 
0.0697 
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